
School of Computer Engineering

Universitat Politècnica de València

N-Modular-Redundant Architecture for
Software Applications.

Voter/Monitor implementation.

Bachelor Final Project

Bachelor’s Degree in Computer Engineering

Author: Pau Sastre Miguel
Supervisor: Ismael Ripoll

July 2014

Acknowledgments

Thanks to Ismael Ripoll for his valuable lessons and suggestions for improvement. Thanks to
Ana Herraiz for proofreading the final project. Thanks to all the people who made it possible.

Abstract

In this project, the novel diversification technique called DRITAE, which stands for
Diversified Replication Architecture Through Architecture Emulation, has been implemented.

The technique consists of compiling the source code application using several
cross-compilation suites to generate different processor executable binaries (variants). Then,
each variant is executed by a fast processor emulator (on the same host) and monitored at
the system-call-level interface.

This form of binary diversification preserves the semantic behavior on each variant.
There are minor discrepancies in the sequence of system calls generated by each replica (due
to emulator or target library implementations), which are filtered out by the monitor.

Paired with this diversification technique, a monitor software with the purpose of
simultaneously executing all the generated variants and controlling the processes during its
entire life, acting as a N-modular redundant system, has been developed.

The results obtained by this approach to a N-modular redundant system reveals some
interesting information:

The results obtained when evaluating this DRITAE architecture and the
N-modular-redundant monitor system show a very satisfactory response to failure or
misbehavior detection, turning the most common and widespread program vulnerabilities
hardly exploitable, if possible at all. Performance wise, the system behaves reasonably well,
as there is an overload derived from simultaneously executing multiple variations of the same
program, but CPU parallelism can be used to mitigate this overhead.

The validation phase, by having to generate and take advantage of some of the most
common vulnerabilities present in software, has proven itself useful in providing the authors
with deeper and broader understanding on how the execution flow of a program works, how
its memory is structured, which are the mechanisms used by an operating system to try to
defend itself from abused processes, and how those mechanisms can be effectively bypassed.

Keywords: redundancy, security, virtualization, failure tolerancy, failure detection, failure recovery,
n-variant system, diversification, software vulnerability, UNIX, Linux, process tracing, syscall,
operative system, monitorization, testing

Contents

1 Introduction 3

2 Model / Architecture - Nvariant System 7

2.1 Architecture Overview . 7

2.2 Diversification . 7

2.2.1 Granularity . 9

2.3 Variants execution . 9

2.4 Variants monitoring . 9

3 Implementation 11

3.1 Implementation design analysis . 11

3.2 Structure of the monitor . 12

3.3 Initialization . 13

3.3.1 Monitor-Variant communication setup 14

3.3.2 Launch and initial synchronisation 15

3.4 Step-lock Execution . 16

3.4.1 Syscall capture . 17

3.4.2 Types of syscalls . 17

1

Contents Contents

3.4.3 Comparing Syscalls . 24

3.4.4 Moving data . 29

3.5 Recovery actions . 30

4 Conclusions 33

2

1 Introduction

Historically, malicious binary code execution has been the most dangerous type of
vulnerability due to the large number of occurrences and its high impact. During the last
decades, a large number of solutions have been developed and implemented to address the
problem. Basically, there are two groups of solutions:

Prevention: help the programmer to write correct code

Mitigation: block or prevent the error to become a security failure on already incorrect
applications

New languages such as Ada, Java and C# jointly with robust versions of the libraries
and APIS try to solve the root of the problem by helping/forcing the programmer to write
correct code. But there are still many applications [TIO, 2012] that are written in C and
C++, which have a weak memory model and are recognized error-prone languages.

Buffer overflow, which is the main cause of malicious code execution, has been ranked as
the most dangerous software error during several decades. Thanks to the efforts done in
many areas to tackle the problem (static analysis tools, robust run-time libraries, buffer
overflow detection mechanisms like the “canary”, non-executable data areas, etc.) and also
due to the rise of other kinds of vulnerabilities related to web programming, buffer overflow
is now the third most dangerous kind of error according to CWE/SANS [Mitre, 2011]. It is
still an open problem which deserves further research to find better solutions.

Diversification is a widely used strategy to build effective defenses against binary
execution injection. The basic idea is to build different versions of the application, known as
variants, in a way that each instance of the application behaves according to the
specification but responds differently to faults. Diversification techniques can be categorized
into “manual techniques” and “automated techniques”. Manual techniques have a high
economic cost, also since humans tend to solve the same problem using similar
solutions [Knight and Leveson, 1986], the resulting variants may not be as different as
desired. Automatic variant generation is an active research area which has seen many
practical advances in recent years.

3

Chapter 1. Introduction

Diversification is a basic technique that can be used in different ways or combined with
others. Laprie et al. [Laprie et al., 1990] defined a diversified design as a system (application)
with at least two variants plus a decider, which monitors the results of the variant execution,
given consistent initial conditions and inputs. The variants are different systems produced
from a common service specification. The decider executes the variants concurrently and
periodically (decision points) compares the state of variants to determine the safety state of
the whole system. Each variant is different with respect to the rest of variant. This form of
diversification is the natural extension of the well known TRM (triple redundant modular)
mechanism to the software elements. Recently, in order to avoid confusion with other forms
of diversification (those without replication and comparison), many authors refer to this
technique as: multi-variant execution environment (MVEE) [Salamat et al., 2011]; diversified
replication [Huang et al., 2010] or N-Variant [Cox et al., 2006].

Another form of diversification used to prevent malicious attacks is to make the
application to appear differently to the attacker at every attack attempt. The variants are
build so that its proper execution depends on a property that is randomly selected at start
time and is not known by the attacker. The protection mechanism is invalidated if the
attacker manages to obtain the secret. The canary (stack protector) and address space
layout randomization (ASLR) are examples of this form of diversification which are
commonly used in most current systems. This kind of diversity makes more difficult to
exploit the existing vulnerabilities and limits the ability to propagate, also the overhead
introduced is low or even zero as with the ASLR.

The compiler-generated diversity presented in [Jackson et al., 2011] another form of
diversification. The current software market structure (software distributed to end-users
through the web using an application store like Android Marketplace or the App Store)
allows to build and distribute a different variant to each customer, assuming that the
compiler/build system is able to produce a large number of sufficiently different variants. In
this case, the number of vulnerable systems, or systems that can be compromised
automatically is reduced drastically. This technique is very effective when the goal of the
attacker is to maximize the number of compromised systems.

The work exposed in this paper focuses on the automatic N-variant generation using
available software tools (COTS) to build a strong multi-variant execution framework.

During the past decade, virtualization has been one of the most active fields, resulting in
new technical solutions as well as high quality use products.

Platform virtualization consists of creating a virtual machine (guest) that acts as a real
computer on top (using the resources) of a real computer (host). The virtual machine
monitor (VMM) is the software element that recreates the virtual computer by using the

4

Chapter 1. Introduction

resources and services of the real computer. Typically, the guest system is very close or even
the same that the host system, that is, a PC i386 board can be virtualized (be the guest) on
an AMD64 host. Most VMMs exploit the fact that most non-privileged instructions of the
guest system can be directly executed by the host computer, and only a few privileged or
sensible instructions have to be virtualized. This way, it is possible to execute most of the
guest code at the same speed as in the host. Modern processors provide some kind of
facilities to intercept (and virtualize) those instructions or hardware resources that cannot be
directly used by the guest as privileged instructions, virtual memory management and IO
access.

A virtualizer that is able to run a guest system with a different architecture from the
host computer is called an emulator. Many virtualizers use a combination of hardware
support and emulation to achieve good performance and compatibility with a broad range of
the processor family, implementing in the VMM the extended instructions not provided by
the host processor. There are basically two emulation techniques: code interpretation and
binary translation. The code interpreting technique is based on a fetch-decode loop. It is
simple to implement but not very efficient, since each guest instruction has to be decoded
(several jumps/conditions) and perform the specified actions, taking into account the side
effects (CPU status bits). Binary translation consists of translating from the guest machine
code into host binary code; basically it can be seen as a compiler but rather than the source
code, that is a high level language, it is the binary code of some CPU and the result of the
compilation is the binary code of the host CPU, which is then directly executed by the host.
A well known emulator is the Java virtual machine which interprets the Java byte-code
instruction set.

In the recent years, and in particular during the development of the Qemu (Quick
EMUlator) by Fabrice Bellard [Bellard, 2005] the binary translation has been largely
improved. It implements dynamic binary translation using an internal compiler. The original
code blocks (list of instructions terminated by a branch instruction) are dynamically
translated into custom intermediate code and then compiled and optimized into the target
code using a custom compiler. Since the translation is done at block level many optimization
can be done: register allocation or lazy conditional code calculations among others. The use
of intermediate code greatly simplifies the addition of new guest architectures while getting
the benefit of the optimized host code generation. Qemu is the de facto standard for
emulation, for example it is used by Google in the development environment for Android
applications.

Qemu has two operation modes: system emulation and user-mode emulation. In system
mode, Qemu virtualizes the ISA layer (Instruction Set Architecture). In this mode, Qemu is
able to execute a complete operating system (BIOS, operating system and applications). In
user-mode emulation, Qemu executes a single process that was compiler for a supported

5

Chapter 1. Introduction

guest CPU, assuming that both guest and host operating systems are the same. For
example, it is possible to run an executable compiled for a Linux ARM system in a Linux i386
computer. This mode is only available for Linux and Mac OS X operating systems. An
operating system emulator is added to Qemu to support this operation mode, which acts as
a proxy to the system calls interface. The solution proposed in this paper employs the
user-mode of Qemu as the execution platform for the variants.

This project has been structured in two differentiated parts: the first part, this document
which explains the implementation of the N-variant system itself, while the second part,
titled “N-Modular-Redundant Architecture for Software Applications - Testing/Validation”
and written by Jordi Chulia Benlloch, exposes the validation and testing processes that the
N-variant system has gone through. The authors recommend to treat both documents as a
whole.

This paper has been organized as follows: Section 2 briefly explains the implementation
model of N-variant system. Section 3 explains the design decisions made and goes through
a series of details as well as the key aspects of the implementation. The last section sums up
the conclusions obtained from this project and offers an insight of possible future lines of
work.

6

2 Model / Architecture - Nvariant Sys-
tem

This section deals with how the N-modular-redundant system works, In which moment in the
execution of a process the system starts working; how the diversification is achieved; in which
way the concurrency occurs; and by what means are all diversified variants controlled.

. Architecture Overview

. Diversification

. Variants execution

. Variants monitoring

2.1 Architecture Overview

As shown by the Figure 2.1, the architecture of the NVariant system is mainly divided in two
parts. The first one is the off-line, where different variants are generated from the source
code. The second part is the on-line, as it happens during execution. In this part, each
variant is executed by means of different dedicated virtualizers, and a monitor process checks
the consistency of the variants execution acting as a middleman between the Operating
system and the virtualizers.

2.2 Diversification

Diversification is achieved by taking advantage of the differences in processor architectures:
The GCC compiler suite has been used in order to generate a wide range of semantically
equivalent variants from a single source code. Moreover, this cross-architecture compilation
is set to link statically all libraries needed, which, due to differences in each architecture, may

7

Chapter 2. Model / Architecture - Nvariant System 2.2. Diversification

Source
code

Monitor

Host OS

Binary 1 Binary N

Syscall interceptor

Syscalls

Consistency detector Policy

Startup

Virtualizer

Syscall translator

CPU 1 emulator

Syscall translator

CPU N emulator

Virtualizer

Cross-compiler
suite N

Cross-compiler
suite 1

Figure 2.1: N-variant Work flow.

8

Chapter 2. Model / Architecture - Nvariant System 2.3. Variants execution

have different implementations. This allows for significant diversification (different stack
distributions, endianness, instruction set, etc) while keeping the system simple.

All this takes place off-line. Besides, the ASLR mechanism provided by the operating
system introduces a new layer of diversity on-line at the very beginning of all the execution
process by simply loading the executables.

2.2.1 Granularity

There are a lot of different ways to obtain diversification. Depending on the amount of
divergence introduced in the execution of the different variants, it is more difficult that all
the instances fail in the same way, or compromise all the instances at the same time. By
compiling the source code, the instructions of each variant are completely different but the
semantics stays the same. Since the type and the flow of syscalls are the same in every
variant, the monitor can synchronize and check the system each time all the variants try to
perform a syscall. By using this approach the monitor checks every variant when a program
wants to interact with the operating system. In other words, the monitor will check every
compromising action the program wants to perform.

2.3 Variants execution

The diversification mechanism exposed above produces highly differentiated variants with a
little effort, but it has a disadvantage. The difficulties arise when the variants cannot be
executed directly in the same processor since each variant is an executable for a different
architecture.

To solve this without using any kind of special or dedicated hardware, the processor
emulator Qemu has been used. Each variant is executed by means of its corresponding Qemu
architecture emulator, which emulates the foreign architectures of the single machine where
all is executed and translates the different syscalls to the ones of the native architecture.

2.4 Variants monitoring

The N-variant system follows the classic replication architecture: several variants of the same
program and one monitor.

9

Chapter 2. Model / Architecture - Nvariant System 2.4. Variants monitoring

Variant
1Monitor ...

Input

Output

Variant
2

Figure 2.2: The monitor acts as a wrapper to the variants.

The number of variants used is transparent to the system. As it can be observed in the
Figure 2.2, the input of the monitor is replicated through all the variants and the output of
each variant is then caught by the monitor again. From the point of view of the user, it is
also transparent as the user actually interacts with the monitor as if it were the original
program.

The monitor emulates different processor architectures in order to obtain the different
variants. In order to conduct this emulation, the monitor executes the Qemu emulator for
each one of those architectures. All the variants run on the same operating system (Linux in
this prototype), and the monitor is in charge of launching all the variants and synchronizing
them.

Due to the need of synchronization, an entry point (the first synchronization point the
monitor does) is added at the very beginning of each. The the purpose this entry point, is to
skip the initialization of each Qemu instance and have an actual starting point common to
each variant. After this point, the monitor starts checking each syscall the variants want to
perform. In order to conduct the checking, the monitor uses a pipe and the ptrace() syscall
for communicating with the variants.

The monitor is in charge of detecting when a program is compromised. In order to
detect this, every instance of the program is traced and synced with the other instances at
some point to compare the state of the program.

10

3 Implementation

This chapter presents the implementation of the prove of concept of the DRITAE
architecture. The chapter is organized as follows: the main design constraints are presented
and discussed; those requirements are then used to design a solution to DRITAE
architecture; the specific implementation issues are presented later; and finally, the different
recovery actions that the system could perform on different situations are discussed.

. Implementation design analysis

. Structure of the monitor

. Initialization

. Step-lock Execution

. Recovery actions

3.1 Implementation design analysis

Several design alternatives have been explored for the implementation of the monitor. The
most interesting solutions were:

1. Implementing the monitor in the kernel of the operating system.

2. Implementing the monitor as a standard process, and use the tracing facilities to
monitor and control the variants.

The final design solution was chosen according to the following high level requirements:

Portability: Although initially developed for the Linux system, the implementation shall be
portable to other UNIX systems.

11

Chapter 3. Implementation 3.2. Structure of the monitor

Development complexity/difficulty: There are many factors that make kernel
programming more complex compared with standard application coding. Just to
mention a few: non-standard APIs, recompile large amount of code, the code to be
modified is spread along multiple files, etc.

Usability: It is simpler and easier to use DRITAE architecture if it can be launched as a
simple process (or a set of processes) than if a new kernel has to be installed.

Efficiency: The monitor shall introduce the minimum possible overhead, specially
considering the non-negligible overhead introduced by the emulation process.

Obviously, the most efficient implementation is the one done at the kernel level where all
information is directly available. In kernel space, it is possible to access to any process
memory and intercept the system calls right when they are invoked at almost zero cost. But
the rest of the requirements do not match. Specially, the cost of programming this kind of
software, which cannot be implemented as a simple kernel loadable module and is far more
complex both in time (many kernel re-compilations and reboots) and complexity (changing
the implementation of the system calls along many different kernel files).

The authors consider this project as a PoC (Proof of Concept) of the DRITAE
architecture. The resulting monitor will serve as the workbench of future developments to
experiment with recovery policies and new diversification mechanisms. Therefore, a compact
and well-structured implementation is also a key aspect to be taken into account.

The selected implementation design is based on a standard process and the ptrace()
facility to control the execution of the variants, which has been complemented with specially
designed hacks (which do not require kernel modifications) to speed-up time-critical
operations on the variants.

The resulting monitor overhead is shown in the Figure 3.1. This overhead is part of an
average test, and it will change depending on the type of program executed. On the one
hand, if the program interacts a lot of times with the operating system, the monitor
overhead will increase. On the other hand, if the process is computationally heavy, the
monitor overhead will decrease.

3.2 Structure of the monitor

The monitor has the following logical blocks:

12

Chapter 3. Implementation 3.3. Initialization

Actual operations
Qemu overhead
Monitor overhead

2%

26%

72%

Figure 3.1: Global system overhead.

Initialization: The variants are launched and synchronized by the monitor. That is, the
monitor is executing the emulator for every architecture and every emulator is
executing the binary compiled for its specific architecture. The monitor also creates
the communication channels.

Step-lock execution: Every variant executes the binary code from a synchronization point
until reaching another synchronization point. At every synchronization point, the
monitor checks the current state of the variants and if the system has been
compromised.

Recovery actions: If the system has been compromised, it applies a series of checkings and
tries to determine which variant has been compromised and tries to overcome the
situation by killing the variant who has been compromised.

Each block is detailed in the following sections.

3.3 Initialization

Before the monitor is able to run all the variants and communicate with them, the monitor
has to initialize all the system. In other words, the monitor has to initialize all the
communication channels and launch all the Qemu instances as well as reaching a common
synchronization point.

13

Chapter 3. Implementation 3.3. Initialization

3.3.1 Monitor-Variant communication setup

The interaction between the variants and the monitor is one of the key factors for the
performance of the system because the monitor is interacting continuously with the variants.
All this interaction occurs at two well defined places:

1. System call interception. The monitor is informed by the kernel that an event related
to a system call has happened. In this case, the interface is controlled and clearly
defined by the Linux kernel.

2. When large amounts of data have to be moved between the monitor and the variant,
the pipes are used. In this case, the size of the data or the location of the buffers are
given by the variant. Since the safety model used considers that the variants may
execute malicious code, this interface must be handled with special care. A malicious
attacker may try to access the monitor through this channel.

In the case of the first type of interaction, the monitor uses two key system calls. The
first one is the wait() syscall, and the monitor uses this syscall as a notification mechanism
to detect when a syscall is about to be performed and when is already performed. The
second one is the ptrace() syscall, it is a very powerful syscall that allows the monitor to be
notified by the kernel using the wait() syscall, but the capabilities of this syscall are bigger.
The reason is that it also allows the monitor to communicate with the process by interacting
with processes in different ways, like getting and setting the registers or even memory from
the process.

For the second type of interaction, the monitor needs to setup a way to move big
amounts of data from the monitor to the variant and vice versa. As the monitor wants to
access memory in the variant address space, it cannot copy directly the memory, therefore
pipes are employed to make a communication channel. The monitor creates one pipe to
communicate in both directions. With this pipe, the monitor is able to communicate with all
of its variants. These variants do not know that they have those file descriptors open, but
the monitor is in charge of specifying the syscall which the variants have to call to in order to
communicate with the monitor by using the ptrace() syscall.

Those pipes are created before starting the variants, so when the monitor is forked in
order to create the variants, the file descriptors of the pipes are inherited by them.

14

Chapter 3. Implementation 3.3. Initialization

pt race (PTRACE_TRACEME, 0 , NULL, NULL) ;

Listing 3.1: Code for allowing the monitor to trace the variant.

pt race (PTRACE_SETOPTIONS, pid , NULL, PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK) ;

Listing 3.2: Code for set the monitor to trace the forked variants.

3.3.2 Launch and initial synchronisation

After setting up the communication mechanism, the monitor is ready to create and
synchronize the variants. In order to perform this task, the monitor goes through the
following steps:

1. Forking the monitor.

2. Executing Qemu in the forked process.

3. Executing the variant until the synchronization point is reached.

4. Setting up the variant in the monitor and in the variant itself.

First of all, the monitor is forked. After that, the new processes are enabled to be traced
using ptrace(), which is set to stop at every syscall. In the Listing 3.1 the ptrace()
function that perform this task is shown. The monitor also needs to execute ptrace() for
setting some options, like tracing a forked process. In the Listing 3.2 this ptrace() call for
setting the options is shown.

After that, Qemu is executed for a given architecture in the forked process.

Before the code of each variant starts being emulated by Qemu, each Qemu instance is
initialized, sets its environment up, and in general performs any initialization task it needs,
like loading different libraries.

As the Qemu instances are different (the initialization tasks may differ depending on the
architecture), the monitor shall not compare the execution of Qemu during initialization, but
only once the code of the application has started to execute.

To solve this problem, two different alternatives have been considered and analyzed:

15

Chapter 3. Implementation 3.4. Step-lock Execution

s t r u c t process_ in fo {
p i d_ t p id ;
p roc_s ta tus_ t s ta tus ;
arch_t arch ;
s y s c a l l _ i n f o _ t s y s ca l l _ i n f o ;
p ipe_ t com;

} ;

Listing 3.3: variant structure.

The first approach considered relies on identifying the syscalls sequence executed by each
Qemu instance (which is different depending on the architecture) before launching the real
program. Therefore, the number of syscalls to skip would not be the same for all variants,
making it impossible unless adding extra logic for each architecture. Also, different Qemu
versions could introduce variations in the syscall sequence, therefore making this approach
very fragile.

The second approach consists of using a “checkpoint” syscall at the beginning of the
main function of the monitored program. When the monitor detects that syscall, it stops the
process. This is repeated for every variant launched. By doing this, every variant is stopped
at the beginning of the program, being in the same state and allowing the monitor to start
comparing each syscall.

The second approach has been selected, using the syscall utime() (number 132 in Linux
for x86) with the argument set to 0xFFFFFFFF as the “checkpoint”. It is an invalid
parameter, and that is why it is impossible to appear on real code. This approach makes
necessary to alter the original source code of the program, but it is a more generic and safer
approach.

The last part of the initialization consists of setting up a mechanism for identifying the
variant in the N-variant system. In order to keep track of the variants, the monitor has an
array of structures where all the parameters of the variant are stored. As can it be seen in
the Listing 3.3, the stored parameters are the PID in order to identify the process; the last
status of the process; the architecture; the file descriptors of the pipes to communicate the
process with the monitor, and a structure which holds the information from the last syscall.

3.4 Step-lock Execution

The Step-lock Execution phase is in charge of comparing and executing the syscalls. Also, it
detects when the system has been compromised, reacting in consequence. The Figure 3.2

16

Chapter 3. Implementation 3.4. Step-lock Execution

shows the main work flow of the Step-lock execution. This work flow is reflected in the main
loop of the monitor, which is shown in the listing 3.4.

Wait for syscall

Verify syscall

System compromised Execute syscall

End monitor

Initialization

Is exit
syscall

YES
YES

NO

NOOK

FAIL

is
recoverable recover

Figure 3.2: Monitor work flow.

3.4.1 Syscall capture

As it can be seen in the Figure 3.2, when all variants are initialized, the monitor resumes all
the variants at the same time. Then, the monitor process stops until all processes send the
signal “sigtrap” to the monitor notifying that the process is at the entry point of a syscall.
At this point, the monitor proceeds to get all the parameters of the syscalls in order to
validate the syscall for every process.

All the information of the syscall is stored in the process’ info structure using another
structure. As it can be observed in the Listing 3.5, the structure contains the syscall number,
the six possible arguments a syscall may have and the return value. At this moment, the
parameters of the syscall are being captured, so just the syscall number and the syscall
arguments should be written. Regarding the reading of the process’ information, ptrace()
is used for getting all the registers involved in the syscall. The Listing 3.6 shows the function
that is in charge of getting all the registers and storing them in the syscall_info structure.

3.4.2 Types of syscalls

In order to simplify and unify syscall comparison, the syscalls have been grouped and
classified depending on the number and type of arguments. After organizing the syscalls, the
monitor is able to get all the different arguments and compare them using generic function

17

Chapter 3. Implementation 3.4. Step-lock Execution

whi le (1) {
wa i t_ fo r_a l l _p rocesses () ;

/ * en ter s y s ca l l PROCESS * /
s ta tus = check_al l_processes_sta tus () ;
check_and_get_al l_processes_syscal ls () ;

/ * Perform the work before the sysca l l cont inue and wa i t u n t i l the s y s ca l l and perform
the work a f t e r the sysca l l * /

per form_sysca l l_on_a l l_processes () ;

i f (ge t_ las t_sysca l l_num () == 231) / * Ex i t s y s ca l l executed . * /
break ;

/ * Ex i t i n g from sysca l l * /
s ta tus = check_al l_processes_sta tus () ;

/ * Work done * /
p repare_a l l _p rocesses_ fo r_sysca l l s () ;

}

Listing 3.4: Main loop code.

s t r u c t s y s ca l l _ i n f o {
unsigned long syscal l_num ;
unsigned long args [6] ;
unsigned long r e t v a l ;

} ;

Listing 3.5: syscall structure.

vo id ge t_p rocess_sysca l l _ in fo (p rocess_ in fo_ t * process) {
s t r u c t user_ regs_s t ruc t r e g i s t e r s ;
p t race (PTRACE_GETREGS, process−>pid , NULL, &r eg i s t e r s) ;

copy_reg is te rs (process ,& r eg i s t e r s) ;
}

Listing 3.6: Function for getting the syscall info.

18

Chapter 3. Implementation 3.4. Step-lock Execution

handlers for most of them. Unfortunately, not all system calls can be handled using a generic
handler, but a dedicated function has to be specially written taking into account the
particularities.

Each system call is described by the following parameters:

1. name: Used for debugging purposes, when there is a conflict with a syscall this is the
name which is shown in the log file.

2. unify: This parameter is set to “true” when the syscall must be executed by the
monitor.

3. ignorable: This parameter is set to “true” when this syscall should be executed only by
one of the variations while the other ones do not execute this syscall.

4. args: This is an array of syscall parameters. It stores the information of every
argument of the syscall.

1. name: Used for debugging purposes, when there is a conflict with this argument
of the syscall this is the name which is shown in the log file.

2. pointer: This parameter is set to “true” when the argument is a memory address
of the type memory map.

3. buffer_type: This parameter indicates the type of data structure a pointer points
to. It is only set when the pointer parameter is set to “true”.

i. string: When the buffer is a string the monitor tries to read the buffer until a
0 char is read.

ii. malloc: When the buffer is a malloc the monitor reads the number of bytes
defined in the argument which number is defined in arg_size.

iii. struct: When the buffer is a struct the monitor reads the number of bytes
defined in the the size parameter.

iv. struct_array: When the buffer is a struct_array the monitor reads the
number of bytes defined the argument which number is defined in arg_size,
multiplied by the size parameter.

4. size: This parameter defines the size of the structure when the buffer_type
parameter is of type struct or struct_array.

5. arg_size: This parameter defines which is the syscall argument number where the
size of the buffer is stored. It is used when the buffer_type is malloc or
struct_array.

6. type: This parameter defines if the buffer is read only, write only or read and write
during the syscall. This parameter is used to know if the buffer must be compared
or not. The parameter is only used when the pointer parameter is set to “true”.

19

Chapter 3. Implementation 3.4. Step-lock Execution

t ime_ t t ime (t ime_t * t) ;

Listing 3.7: Example of safe syscall (time syscall).

ss i ze_ t w r i t e (i n t fd , const vo id * buf , s i ze_ t count) ;

Listing 3.8: Example of risky syscall (write syscall).

7. compare: When this parameter is “true”, the monitor will compare this argument
of the syscall with every other variations.

First of all, the syscalls that are more likely to represent a threat for our system when
misused are identified. There are syscalls like time() that do not represent a big risk for the
system (Listing 3.7), while there are other syscalls like write() which can cause a lot of
damage (Listing 3.8).

Secondly, it is necessary to differentiate whether the syscall should be “unified” or not. A
system call has to be unified when all the variants shall receive a copy of the syscall output.
That is, only one system call shall be performed, and the variants shall receive a copy of its
output. As the monitor has all the open resources like socket, files, etc... unifying is the
normal behavior, but another reason of unify the syscalls is that the syscall is only executed
by one process and not by all the variants.

One syscall that needs to be unified would be the read() syscall (Listing 3.9), with this
syscall, all the variant must have the same result, so the monitor is in charge of performing
the syscall and return the result to all the variants. As opposite, the syscalls that do not
need or cannot to be unified: an example of this syscall would be mmap() (Listing 3.10). In
this case it is only necessary to check the parameters of the syscall, but every variant is in
charge of performing the syscall.

Finally, the last parameter used for organizing the syscalls is the argument type.
Regarding the kind of arguments that could appear, two main basic data types have been
identified:

ss i ze_ t read (i n t fd , vo id * buf , s i ze_ t count) ;

Listing 3.9: Example of unified syscall (read syscall).

20

Chapter 3. Implementation 3.4. Step-lock Execution

vo id *mmap(vo id * s t a r t , s i ze_ t length , i n t prot , i n t f l ags , i n t fd , o f f _ t o f f s e t) ;

Listing 3.10: Example of spread syscall (mmap syscall).

vo id e x i t (i n t s ta tus) ;

Listing 3.11: Example of word type (exit syscall).

1. Word type: It is only necessary to get the register from the processor to copy this
argument. In the Listing 3.11, the first argument is a word type.

2. Buffer type: This is a more complex type than the word type, as there are different
types of buffer. While the word type is usually 32 bits long in a 32 bits architecture
and 64 bits in a 64 bits architecture, the buffer type can be of any length, and there
are different ways of specifying the size of those buffers. To read a buffer from the
variant, the communication mechanism described in Section 3.3.1 is used. Then, in
order to read a buffer from the variant, the size of the buffer and the memory position
in which the buffer starts are parameters that must be known. The buffers have been
differentiated depending on the way the size is specified:

1. Struct: This type of buffer has a static size, so when it is detected in a syscall, it
is not necessary to get the size from another parameter. The syscall shown in the
Listing 3.12 is a good example of this type because the second argument is a
struct, and the size of this struct is 144, so the monitor knows how big the
structure is.

2. Array Struct: This type of buffer is an array of structs, so in this case it is
necessary to define the size of the struct like in the struct type, but it is also
necessary to define in which argument the size of the array can be found. An
example of syscall that uses this type of buffer can be seen in the Listing 3.13. In
this function the first parameter is an array of structures, each structure is 8 bytes
and the second argument indicates how many structures are in the first argument.

3. string type: The string type is an array of characters and in this case the size is
defined by the buffer itself. In order to calculate the size, the whole string is
traversed until the character 0x00 is found, which means the end of the string.

i n t f s t a t (i n t f i l edesc , s t r u c t s t a t * buf) ;

Listing 3.12: Example of struct buffer type (fstat syscall).

21

Chapter 3. Implementation 3.4. Step-lock Execution

i n t ppo l l (s t r u c t p o l l f d * fds , n fds_ t nfds , const s t r u c t t imespec * t imeout_ ts , const
s i g se t _ t * sigmask) ;

Listing 3.13: Example of array of structs buffer type (ppoll syscall).

i n t open (const char *pathname , i n t f l a g s) ;

Listing 3.14: Example of string type (open syscall).

An example of a syscall that uses this type of buffer is the open syscall shown in
the Listing 3.14: in this case the first argument is an string type.

4. malloc type: The malloc type has been defined as a type in which the size is
entirely defined by another argument, it means that when reading this type of
data, it is necessary to know how many bytes have to be read. Firstly, the register
in which the size of the buffer is defined is read, and later on the buffer from the
variant is read. One syscall that uses this kind of data is the write() syscall
shown in the Listing 3.15: This syscall uses a buffer argument as a second
argument and defines the size of that buffer in the third argument.

Taking as example the write() syscall (3.15), it can be stated that this syscalls writes a
number of bytes in a file descriptor. It is a potentially dangerous syscall, because it writes
data in the system and interacts with the hardware. This syscall would also need to be unified
because all the opened file descriptors are in the monitor. This syscall has three arguments:

1. fd: Word type argument and contains the number of the file descriptor in which the
data have to be written.

2. buf: Buffer type argument being a memory pointer, pointing at the memory address in
which the data to be written is located.

3. count: This is the complementary information for the “buf” argument, and it defines
how many bytes the buffer has.

ss i ze_ t w r i t e (i n t fd , vo id * buf , s i ze_ t count) ;

Listing 3.15: Example of buffer type (write syscall).

22

Chapter 3. Implementation 3.4. Step-lock Execution

[
{

"name" : S t r ing ,
" un i f y " : Boolean ,
" igno rab le " : Boolean ,
" args " : [

{
"name" : s t r i ng ,
" po i n t e r " : Boolean ,
" bu f fe r_ t ype " : [s t r i ng , malloc , s t r u c t , s t r u c t _a r r a y] ,
" s i ze " : i n t ,
" arg_s ize " : i n t ,
" type " : [in , out , i nou t] ,
" compare " : Boolean

}
]

}
]

Listing 3.16: JSON syscall description file.

Syscall description table

In order to automatize syscall description, a JSON file defining the syscall options and
parameters have been created. The structure of this syscall table can be seen in the Listing
3.16. Using this structure all the syscall can be defined using the structure explained before.

The monitor needs to use this syscall information, yet using JSON is quite slow, another
solution has been found. This JSON file is transformed to a binary file. In the Figure 3.3 you
can see the work-flow for generating this syscall description table. Firstly, a small Python
script parses this description file and generates a C file. Secondly, this C file is compiled
using GCC, and finally the binary file generated by GCC is directly loaded by the monitor.

{ JSON }

JSON_to_C.py

GCC

syscall-conf.binMonitor

On-line Off-line

Startup

Figure 3.3: Syscall table workflow.

23

Chapter 3. Implementation 3.4. Step-lock Execution

{
"name" : " w r i t e "
" un i f y " : t rue ,
" i gno rab le " : fa l se ,
" args " : [

{
"name" : " fd " ,
" po i n t e r " : fa l se ,
" compare " : t r ue

} ,
{

"name" : " buf " ,
" po i n t e r " : t rue ,
" bu f fe r_ t ype " : " mal loc " ,
" arg_s ize " : 2 ,
" type " : " out " ,
" compare " : t rue ,

} ,
{

"name" : " count " ,
" po i n t e r " : fa l se ,
" compare " : t r ue

}
] ,

}

Listing 3.17: Definition of the write syscall in the JSON file.

In the Listing 3.17, you can see the definition of the write() syscall using the JSON
structure.

3.4.3 Comparing Syscalls

Is in this part where the monitor notices if the system has been compromised. As shown in
the figure 3.4 there are two main steps in the comparison process.

The first step consists of comparing the syscall number. If the syscall number does not
match, it is necessary to check if any of the syscalls are considered secure (that is, the
mismatching syscall situation is produced by the differentiation mechanisms used when
generating the variants, not because a system failure or misbehavior), meaning that the
execution of this syscall in only one variant is not considered a threat to the system. In such
situation, the secure syscall shall be skipped until the two syscalls match (with a specified
and configurable maximum skipped syscalls limit).

The fact of getting different syscalls from different variants is usually due to the libraries
used on each architecture variant. The libraries normally use a lot of syscalls, and the same
library compiled for different architectures may use different syscalls for performing the same

24

Chapter 3. Implementation 3.4. Step-lock Execution

Is a bufferargument needs
comparison

Buffer
comparison

Value
comparison

Is the same

same syscall
number

Is the syscall
ignorable

skip syscall

System compromisedYES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NONO

!

more
arguments

Figure 3.4: Comparison workflow.

function. This would be fixed by checking which the sequence of syscalls matching in
different library architectures are, but for the approach taken, it has been considered
unnecessary. One example of this problem appears in the glibc library: When using the
printf() function, glibc perform a malloc for expanding the string but not flushing the
string during the function, which leads to two variants performing the flush at different
moments.

The second step consists of comparing the arguments of the syscall for which two
different comparisons can be made depending on whether the data is a word or a buffer.

If the data is of type word, the values from all the variants are compared directly by
reading the registers. Those registers are stored in the process_info struct. But if the type of
the data is a buffer, the whole buffer is not compared, as it might be very costly to compare
every byte depending on the size of the buffer. Instead, only a percentage of random words
of the buffer are compared using ptrace() to get the words from the process.

The Listing 3.18 shows the two functions involved in the process of comparison. The
compare_processes_syscalls() returns 1 if the syscall number and all the arguments are
the same, or 0 if the syscall number or some argument is different. The function
compare_arg() is used to compare every argument in the syscall. The function

25

Chapter 3. Implementation 3.4. Step-lock Execution

char compare_processes_syscal ls (p rocess_ in fo_ t *p1 , p rocess_ in fo_ t *p2 , s y s ca l l _ t *
s y s ca l l _ i n f o) {
r e t u rn p1−>s y s ca l l _ i n f o . syscal l_num == p2−>sy s ca l l _ i n f o . syscal l_num

&& compare_arg (p1 , p2 , 0 , s y s ca l l _ i n f o)
&& compare_arg (p1 , p2 , 1 , s y s ca l l _ i n f o)
&& compare_arg (p1 , p2 , 2 , s y s ca l l _ i n f o)
&& compare_arg (p1 , p2 , 3 , s y s ca l l _ i n f o)
&& compare_arg (p1 , p2 , 4 , s y s ca l l _ i n f o)
&& compare_arg (p1 , p2 , 5 , s y s ca l l _ i n f o) ;

}

char compare_arg (p rocess_ in fo_ t *p1 , p rocess_ in fo_ t *p2 , i n t arg , s y s ca l l _ t * s y s ca l l _ i n f o) {
r e t u rn ! s ysca l l _ i n f o −>args [arg] . compare | |

(! IS_POINTER(sysca l l _ i n f o −>args [arg] . type) && compare_arg_value (p1 , p2 , arg)) | |
(IS_POINTER(sysca l l _ i n f o −>args [arg] . type) && (sysca l l _ i n f o −>args [arg] . type &

arg_ t_bu f f_ou t) && compare_arg_buffer (p1 , p2 , arg , s y s ca l l _ i n f o)) ;
}

Listing 3.18: Code used for comparing syscalls.

compare_arg() checks if the argument needs to be compared and if the argument is a
pointer, it compares the argument as a buffer. Otherwise, it compares the argument as a
value.

Generic syscall handling

This part of the monitor is in charge of performing the syscall. At this point, it has been
checked that every process tries to perform the same syscall with the same arguments. In
order to perform the syscall some things have to be taken into account: Firstly, there is a
need to differentiate between the generic logic syscalls and the complex ones. The generic
logic syscalls are those from which the logic can be generalized in a way that only with the
information defined in the JSON file, the syscall can be correctly performed. On the other
hand, if the syscall is a complex one, the logic is defined in the program requiring the
execution of special logic in order to be performed by the monitor.

The figure 3.5 shows the work flow when executing a generic syscall like read() for
instance.

The first step is to check if the syscall needs to be executed by the monitor or it must be
executed by the variant itself, for example the read() syscall must be executed by the
monitor because all the file descriptors belong to the monitor. In this case, if this syscall is
executed in the variant, it would trigger an error since this file descriptor does not exist for
the variant. An example of a syscall that needs to be executed on the variant would be the
malloc() syscall because the kernel has to allocated space to the variant and if this syscall

26

Chapter 3. Implementation 3.4. Step-lock Execution

Perform syscall
on variant

Perform syscall
on monitor

Unify
syscall

NO YES

paste return value
on all variants

For each argument copy buffer if
needed

For each argument paste buffer if
needed

Figure 3.5: Execution work flow.

is executed in the monitor this memory would not be available for the variant.

If the sycall is executed by the variants, the handling is done, but if is executed in the
monitor there are a few steps more to be performed. After checking if the syscall needs to be
unified, the monitor has to perform the syscall. In order to do it, the number of the syscall
and all the data of every argument must be available. The number of the syscall number and
all the arguments that are of type word are already available, but if the argument is of type
buffer and the syscall reads the content of the buffer, this content must be copied before the
syscall is performed.

After getting all the information required, the monitor has to perform the syscall. After
performing the syscall in the monitor, all the buffers that the monitor has written need to be
copied to every variant. The last thing for completing the syscall handling is to write the
return value of the syscall in all the variants. Before writing the return value the syscall has
to be canceled in all the variants. In order to do this, the value of the RAX register, which is
the one storing syscall number, is changed and set to 0xFFFFFFFF. After setting the
register, the variant executes the syscall, the kernel notices that this syscall number does not
exist and gives an error. At this point, the RAX register value is set again but with the value
the syscall gave to the monitor (return value).

As it can be seen, the monitor performs the syscall that were going to be executed by
the variants. The variants execute an invalid syscall, but from the point of view of the

27

Chapter 3. Implementation 3.4. Step-lock Execution

variants, the syscall has been successfully performed.

The Figure 3.6 shows the execution diagram for the read() syscall. The monitor is only
running when it is handling a syscall, so while the program is running, the monitor is waiting
for all the variants to perform a syscall. When all the variants try to perform a syscall, the
monitor stops the variants and starts handling the syscall. After checking the parameters of
the syscall, the monitor will perform the syscall. Because of the fact that this syscall has an
input buffer, it transfers the buffer to all the variants after the syscall is performed by the
monitor. That is why the monitor performs a write syscall to write the buffer into a pipe.
After all the variants have read the buffer from the pipe, the monitor will continue the
execution of all the variants.

Var 1 Var 2 Monitor Host OS *

read()

Continue

Reach beginning
of syscall

Waiting
Running

Pipe Communication

Continue execution

Monitor execution
phase

Stop

Executing kernelFinish read()

read()

read()

* Only the interaction of the kernel with the monitor and the variants is shown.

read() write()

Figure 3.6: read() execution digram.

Fork syscall handling

In the case of the fork() and clone() syscall, a special logic has been implemented in
order to set up the monitor to be able to handle the verification of the syscalls of the original
and newly-created processes. When a fork() or clone() syscall is detected, the syscall is
executed in the child, and then both father and child processes are stopped at the end of the
syscall. Then the monitor is forked, and new pipes are created to communicate the father
monitor with the new variants. The final process schema is shown in the Figure 3.7. If only

28

Chapter 3. Implementation 3.4. Step-lock Execution

one communication channel for all the variants were used, race conditions would occur
between the old monitor and the new one.

After creating those pipes, the new variants (the child processes after the forks) are
assigned to the new monitor (the child monitor after the fork) and the new pipes are opened
in those variants in order to communicate with their assigned monitor process. At this point,
there are two monitor processes, each one with its own variants, with the ability to
communicate independently from the other monitor. After this initialization of the new
monitor, the system is ready to resume the execution of both the father and the child
variants.

The monitor is the interface to communicate the variant with the system. From the
variant’s point of view the process tree has been changed, but from the monitor point of
view the process tree is the correct one. It means that when the variants want to
communicate with its child, the monitor will be communicating with its child monitor, and
syscalls like wait() will work as expected.

Monitor
Com
Pipe

Monitor
Com
Pipe

ARM
Variant

PPC
Variant

ARM
Variant

PPC
Variant

Figure 3.7: Process Tree after fork.

3.4.4 Moving data

There are some syscalls in which moving data from the variant to the monitor or vice versa is
required. In order to move that data, the monitor and the variant use a pipe system. Those
pipes are initialized in the communication set up process.

This data movement is required sometimes before or after the syscall. For example, the
syscall write() requires to copy data from the variant before the syscall is executed. But
with the syscall read() is the other way around since it needs to write data into the variant

29

Chapter 3. Implementation 3.5. Recovery actions

pt race (PTRACE_GETREGS, process−>pid , NULL, &sysca l l) ;
s y s ca l l . r i p −= SYSCALL_INSTRUCTION_SIZE ;
p t race (PTRACE_SETREGS, process−>pid , NULL, &sysca l l) ;

Listing 3.19: Change instruction pointer in the variant.

after the syscall is performed.

There are two kind of actions, depending on the operation the monitor needs to perform:

1. Read data from the variant: When the monitor needs to read data from the variant, it
will perform a read() syscall, and the variant will perform a write() syscall.

2. Write data to the variant: When the monitor needs to write data to the variant, it will
perform a write() syscall, and the variant will perform a read() syscall.

As explained above, when the monitor needs to move data a syscall needs to be
performed in addition to the one that the variant wants to perform. It means that the
variant needs to perform more than one syscall. In the monitor side as many syscalls as
needed can be performed, but as the monitor cannot execute code in the variant, some tricks
need to be done in order to execute more than one syscall in the variant.

When a monitor needs to execute another syscall in the variant, it changes the
instruction pointer using ptrace(), so it can execute as many syscall in the variant as it
wants. The Listing 3.19 shows how the monitor changes the instruction pointer in the
variant. It is decreased by two (syscall instruction in x86 is 2 bytes) the current instruction
pointer, so the pointer is again pointing to the syscall. By using this technique, the monitor
can execute as many syscalls as it needs when the variant is about to execute only one
syscall. Moreover, the monitor changes the RAX register so the variant will execute the
syscall that the monitor wants. In the case of read() syscall, the monitor sets the RAX to 0
and in the case of a write() syscall, the monitor sets it to 1.

3.5 Recovery actions

This part of the monitor is one of the most important since it is in charge of recovering the
system when it has been compromised, or something has just gone wrong. Nowadays, it is
crucial to maintain a system or service, up and running smoothly as much time as possible.
Therefore, not only detection but also reaction to failures are necessary.

30

Chapter 3. Implementation 3.5. Recovery actions

There are different situations in which the system can fail or be compromised. If the
problem is small enough, the measure taken by the monitor will not be dramatical. However,
if the system has been fully compromised, the monitor will kill every variant. After killing all
the variants, the monitor can relaunch them from the beginning, but it is very costly since it
has to synchronize every variant again.

In the situation of the monitor having no variants left (worst case), two measures can be
taken:

Resume from checkpoint: If a checkpoint has been defined, the monitor will relaunch the
variants from this checkpoint.
The variants can define a checkpoint arbitrarily at any point in execution. In order to
define a checkpoint, the monitor uses the same syscall like at the beginning. However,
it uses a different value for the first argument this time, 0xFFFFFFFE. If the variant
sets another checkpoint, the monitor will remove the old one and save the new one
instead.
When the monitor detects that the variant wants to define a checkpoint, it forks every
variant and stops the execution of this forked variant. This fork-and-stop action is
equivalent to saving the current state the variant processes, so when the monitor needs
to restore the variant from a safe position, it only needs to fork the checkpoint again
and run this new fork.
By using this checkpoint mechanism, the monitor can mitigate the time used by the
system to launch all the variation and initialize Qemu.

Full relaunch: If no checkpoint has been defined, the monitor will relaunch all the variants
from the beginning of the variant program.

In the case of the system not being fully compromised, different approaches could have
been taken:

1. The first approach would be when the monitor detects which are the variants that have
the same syscall number and the same arguments, and it kills the variants that diverge
from the majority. If all the syscalls diverge from each other, the monitor aborts the
execution of all the variants. In this case, the system would abort when the last two
running variants disagree.

2. The second approach would be when the monitor detects and kills the divergent
variant, and then launches another variant and executes this variant until reaching the
state of the other variants. In order to do this, the monitor needs to keep all the data
from all the syscalls and provide all that information to the new variant.

31

Chapter 3. Implementation 3.5. Recovery actions

3. The third approach would be to abort the execution of all the variants immediately
after any discrepancy. This would be like the worst case explained before.

4. The last approach would be to pause the program and send an alarm to the system
administrator, delegating the decision of which recovery action to choose to a human.

The proof-of-concept N-variant monitor implemented has different available recovery
actions. In this system, the first and third measures have been implemented. In addition to
those recovery actions, the checkpoint mechanism and the full recovery have also been
implemented. Those measures can be chosen at the moment of launching the monitor.
Those policies have been matched to different ratios of security/availability, being, for
instance, the action of aborting execution of all variants when detecting any discrepancy the
most secure action but also the one that punishes the availability of the service the most.

32

4 Conclusions

As explained in the introduction section, this document exposes one of the two parts of a
whole project, hence the concluding remarks presented in both documents are the same.

The initial goals planned for this project have been successfully met: a working N-variant
system has been implemented and tested against a wide set of common software
vulnerabilities. Both, implementation and validation processes, have allowed the authors to
gain a much deeper understanding of the internal mechanisms by which a process interacts
with an operative system, how the operative system itself manages the requests for system
resources of a process, and how a process itself behaves internally and its organization and
structure.

In this project, a novel N-variant system based on an automatic processor architecture
diversification with monitorization at the system call level has been implemented and
validated. This project is part of a research project, where the fundamental ideas of the
diversification architecture were developed.

The diversification method is based on the differences of each architecture (endianess,
instruction set, register set, address layout, compiler optimizations, etc.) to detect
misbehaviors that would remain undetected otherwise, as for each architecture the same fault
is manifested in a different manner. Therefore, the more variants running simultaneously, the
more likely to detect errors. Variants are created automatically by compiling the source code
of the application with several cross-compilers. Therefore, each variant is a GNU/Linux ELF
image but with different instructions sets (i.e. x86, x86_64, ARM, MIPS, etc.).

The main contribution of this project has been the design and implementation of the
monitor, which acts as the “voter” of a NMR (N-Modular-Redundant) system. It controls
the synchronous execution of multiple variants and applies a recovery action when there is a
discrepancy between them. Since all the executable images are obtained from the same
source code, their execution shall produce a similar sequence of system calls. Each variant is
executed on the same host thanks to fast processor emulation and they are controlled by the
monitor process that checks every system call to ensure semantic equivalence for all variants.

33

Chapter 4. Conclusions

The monitor has been implemented as a regular Linux process using the ptrace()
system facility to control the variants. ptrace() is a kernel facility to observe and control
the execution of processes from user space. It is mainly used by debuggers to trace and
inspect debugged programs. It has been used ptrace() to automatically track the execution
of multiple variants.

Since the ptrace() facility was designed to be used as a debugging mechanism and
debugging is done off-line, it is very powerful but not as efficient as desired when used
intensively. Specifically, moving data between the monitored process and the monitor is very
slow. To overcome this major problem, as well as other problems, several advanced solutions
were designed and implemented without changing the kernel of the operating system. That
is to say that no new system calls or devices are added to Linux.

Thanks to the tricks used in the implementation of the monitor, the variants do not need
to contain any kind of “helper” code to interact with the monitor. Both the variants and the
operating system kernel are completely transparent.

The tests driven to enclose the capabilities of this N-variant system have proven it to be
effective when detecting undesired behavior produced by exploit attempts of some of the
most common program vulnerabilities derived from bad programming habits.

With just 3 different architectures (the bare minimum, should some kind of
post-detection policy other than aborting execution were implemented alongside the
monitor), the system has been able to virtually disable the exploitation of vulnerabilities such
as stack buffer overflow, string format vulnerability and any sort of code injection and
execution; in addition to that, this systems greatly increases the complexity for successfully
exploiting a heap-overflow based vulnerability.

Furthermore, bugs and malware with such a high-profile as the so called “Blaster worm”,
or the “Heartbleed bug”, with worldwide impact and repercussion in terms of privacy and
security could have been promptly detected and fixed at origin should a N-variant system
similar to the one proposed in this paper were in use, having all subsequent damage avoided.

As it is to be expected, there has to be a tradeoff between the extra security provided by
this N-variant system and the performance of the processes or services it protects. There is a
considerable performance impact on cpu-intensive applications directly proportional to the
number of variants simultaneously running. However, taking advantage of the parallelism
offered by multicore processors, this performance penalty can be considerably reduced.

Further research

34

Chapter 4. Conclusions

Further work in the line of what has been done with this N-variant system could explore
the possibility of implementing recovery policies in the N-variant monitor based on treating
each system call as a checkpoint. Apart from this, being able to rollback a program execution
to any past checkpoint, or to launch a new variant at any point in time and using the
checkpoints to allow that new variant to eventually catch the state of the other variants up.

Another possibility offered by the N-variant system would be to set an operating system
init process to be monitored, therefore being able to effectively monitor and protect each and
every process run on that operating system.

Yet another derivation from this work would imply to modify and extend the monitor
system to also provide the capabilities of a sandboxing system. In addition to checking the
integrity of the execution, the monitor can be aware of what actions interact with the
filesystem, or with the network interfaces and depending on some specified policies,
preventing or reacting to certain actions that the monitored process would perform.

As a way of mitigating the severe overhead introduced by Qemu, introducing a
multiprocessor machine would be possible with each processor being a different architecture
and running each variant natively. In this way, the performance would be maximum, and the
only overhead introduced would be the one of the monitor.

Derived from the previous possibility, in a system where it were desirable to have a pool
of variant architectures but running only simultaneously a subset of all those architectures
and rotating the active ones, a way to avoid having idle hardware waiting would be to use
FPGAs (Field Programmable Gate Arrays) to reconfigure themselves as the current
architecture to be run.

The N-variant monitor can also be extended to log at which point has a program failed
or been compromised, as the execution context (last syscalls, arguments, etc) is known at
every moment. Furthermore, knowing the context when a variant has failed could be used to
build statistics upon which an heuristics system can be build to try to anticipate certain
situations by preemptively launching, killing, pausing variants or creating checkpoints in some
situations.

Yet another derivation from the monitor could be using the ability of detecting code
injection and execution to, instead of aborting execution when detected, sandbox and isolate
the target variant of the code injection, giving an attacker the impression of a successful
attack, while giving some time to properly react and protect the system.

35

List of Figures

2.1 N-variant Work flow. 8

2.2 The monitor acts as a wrapper to the variants. 10

3.1 Global system overhead. 13

3.2 Monitor work flow. 17

3.3 Syscall table workflow. 23

3.4 Comparison workflow. 25

3.5 Execution work flow. 27

3.6 read() execution digram. 28

3.7 Process Tree after fork. 29

36

Listings

3.1 Code for allowing the monitor to trace the variant. 15

3.2 Code for set the monitor to trace the forked variants. 15

3.3 variant structure. 16

3.4 Main loop code. 18

3.5 syscall structure. 18

3.6 Function for getting the syscall info. 18

3.7 Example of safe syscall (time syscall). 20

3.8 Example of risky syscall (write syscall). 20

3.9 Example of unified syscall (read syscall). 20

3.10 Example of spread syscall (mmap syscall). 21

3.11 Example of word type (exit syscall). 21

3.12 Example of struct buffer type (fstat syscall). 21

3.13 Example of array of structs buffer type (ppoll syscall). 22

3.14 Example of string type (open syscall). 22

3.15 Example of buffer type (write syscall). 22

3.16 JSON syscall description file. 23

3.17 Definition of the write syscall in the JSON file. 24

37

Listings Listings

3.18 Code used for comparing syscalls. 26

3.19 Change instruction pointer in the variant. 30

38

Bibliography

[TIO, 2012] (2012).
TIOBE Software: Tiobe Index.

[Bellard, 2005] Bellard, F. (2005).
Qemu, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track, pages 41–46. USENIX.

[Cox et al., 2006] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight,
J., Nguyen-Tuong, A., and Hiser, J. (2006).

N-variant systems: a secretless framework for security through diversity.
In Proceedings of the 15th conference on USENIX Security Symposium - Volume 15,

USENIX-SS’06, Berkeley, CA, USA. USENIX Association.

[Huang et al., 2010] Huang, R., Deng, D. Y., and Suh, G. E. (2010).
Orthrus: efficient software integrity protection on multi-cores.
SIGPLAN Not., 45(3):371–384.

[Jackson et al., 2011] Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G.,
Gal, A., Brunthaler, S., Wimmer, C., and Franz, M. (2011).

Compiler-generated software diversity.
In Jajodia, S., Ghosh, A. K., Swarup, V., Wang, C., and Wang, X. S., editors, Moving

Target Defense, volume 54 of Advances in Information Security, pages 77–98. Springer.

[Knight and Leveson, 1986] Knight, J. C. and Leveson, N. G. (1986).
An experimental evaluation of the assumption of independence in multiversion

programming.
IEEE Trans. Softw. Eng., 12(1):96–109.

[Laprie et al., 1990] Laprie, J.-C., Béounes, C., and Kanoun, K. (1990).
Definition and analysis of hardware- and software-fault-tolerant architectures.
Computer, 23(7):39–51.

[Mitre, 2011] Mitre (2011).
CWE/SANS top 25 most dangerous software errors.

[Salamat et al., 2011] Salamat, B., Jackson, T., Wagner, G., Wimmer, C., and Franz, M.
(2011).

39

Bibliography Bibliography

Runtime defense against code injection attacks using replicated execution.
IEEE Trans. Dependable Sec. Comput., 8(4):588–601.

40

	Introduction
	Model / Architecture - Nvariant System
	Architecture Overview
	Diversification
	Granularity

	Variants execution
	Variants monitoring

	Implementation
	Implementation design analysis
	Structure of the monitor
	Initialization
	Monitor-Variant communication setup
	Launch and initial synchronisation

	Step-lock Execution
	Syscall capture
	Types of syscalls
	Comparing Syscalls
	Moving data

	Recovery actions

	Conclusions

